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ABSTRACT 

We examine the general question of the properties of light, neutral 

colored spin-zero particles in QCD. Models with spontaneous breaking of 

QCD at very large distaru:es, such as that of DeRCijula, Giles, and Jaffe 

and the S(3) szheme of Slansky, Goldman and Shaw require such light 

colored Higgs scalars. These scalars will form color singlet hadronic 

bound states at short distances and we estimate bound state masses, 

decay widths, and production rates in processes such as ++y+X within the 

MIT bag model. The resulting states are expected in the mass 

neighborhood ~1.5 GeV and should resemble glueballs. 

3 Opwaled by Unlvarsltles Research Association Inc. under contract with the United States Department of Energy 
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I. INTRODUCTION 

It is generally accepted that QCD is the correct theory of quark 

and gluon interactions, and that quarks and gluons are confined into 

color singlet hadronic bound states. Taken together with leptons and 

the known vector bosons it is quite remarkable that up to a mass scale 

of the order of 20 GeV there is no direct experimental evidence for the 

existence of elementary, point-like spin-zero objects. An electrically 

neutral, light, colored spin-zero particle would be bound into a 

hadronic composite state and would be quite difficult to observe. 

Some motivation for considering such objects can be gleaned from 

theoretical interpretations of the possibility of the existence of 

fractionally charged particles, as reported in recent experiments [Il. 

Since all color singlets have zero triality, the conventional charge and 

color assignments of quarks, leptons, and vector bosons guarantees the 

absence of fractionally charged particles in the presence of 

confinement. If one is led, however, to accept the reports of the 

observation of fractionally charged objects, then one must consider 

either a departure from the conventional relationship between triality 

and charge assignments, e-g., either there may exist 

fractionally charged leptons or non-fractionally charged quarks, or that 

color confinement is not an exact physical phenomenon but is violated, 

albeit sufficiently weakly to have escaped direct experimental 

detection. 

There exist two models in the literature adopting the latter point 

of view. DeRGjula, Giles and Jaffe [21 (DGJ) propose that SU(3) of 

color is broken by three color triplets of Higgs scalars in an 
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SU(3) global xS"(3)color potential down to a residual global SU(3) of 

color. Since here the only exact symmetry of the world emerges as a 

global SU(3), the quarks become liberated at large distances and can 

account for the observation of fractional electric charge. However, 

since this model requires three electrically neutral color-triplet Higgs 

scalars it already abandons the conventional triality-electric charge 

relationship, as well as color confinement. 

Slansky, Goldman and Shaw, (SGS) [31, have suggested a model in 

which SU(3),olor breaks to a local SO(3). This can be accomplished with 

an SU(3) 27-dimensional neutral Higgs multiplet, which has zero 

triality, and thus the triality-electric charge relationship is 

preserved. (A more economical method would be to use the color sextet 

tiich violates triality, ab initio). In this model, the quarks become 

vector triplets of SO(3). Since SG(3) is assumed to be confining, only 

SO(3) singlets can ultimately exist and hence diquarks are allowed as 

large distance bound states and could account for the observation of 

fractional charge. 

In general, models of spontaneously broken QCD produce fractionally 

charged objects at large distaroes, r>>l/M, where M is the mass of the 

gluons those color charges do not annihilate the vacuum. Since there 

exist extremely tight experimental limits on the production of 

fractionally charged states it is necessary to have a dynamical picture 

in which production of such exotics is suppressed in conventional 

accelerator experiments. Suppose that QCD is broken to a local group G 

at an energy scale M. At a distance scale on the order of l/M there 

will exist states tiich are singlets under G but have nontrivial 

SU(3) color transformation properties. me conventional picture is a 
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string model in which the string must be stretched to the distance l/M 

without breaking in order to form these states. The probability that a 

QCD string can be stretched a distance l/M without disintegrating into 

ordinary pions, etc., is described by a vacuum persistewe probability 

[41: 

'r - exp(-2x104(MeVJ2/M2) . (1.1) 

In order to suppress the production of fractionally charged states to 

the order required by recent PEP limits [51, the parameter M must be 

adjusted to an extremely small value. Experimentally, at an energy 

Q = 29 GeV: 

R : 
de+e--tq2,392,3) 

'2/3 a(e+e-+u+p-) 
5 .Ol (1.2) 

for charge 2/3 objects and for a wide range of quark masses. We 

approximate: 

R 
'2/3 

- Irs (2/3j2Pr (1.3) 

flavors 

and using eq.(l.l), we find M1;60 MeV. Hence, the scale at which 

N(3) color can break down to something else is extremely small. 

Of course, such schemes are speculative and may contain other 

theoretical problems as well. Virtually any of the properties of the 

large distance fractionally charged states will be impossible to 

estimate reliably without a detailed knowledge of the breaking dynamics 
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due to the high sensitivity upon the parameter M through the exponential 

of eq.cl.1). As witness to this fact, recently Kolb, Steigman and 

Turner [61 have attempted to estimate the relic abundance of 

fractionally charged diquarks in the SGS model. Their result for the 

number of diquarks per nucleon, p, is precisely 10 -50 
<p<lO lo! 

In the present paper we will examine the properties of confined 

light scalars in QCD. 'ihese objects would constitute an indirect test 

of the broken SU(3)cO10r schemes, all of which require the existence of 

light colored Higgs scalars. Furthermore, the properties and 

systematics of these new hadrons are not subject to the enormous 

uncertainties inherent in the large distance fractionally charged 

states. To estimate the properties of these objects, we may turn to any 

standard hadronic bound-state model, e.g., the MIT bag model [7]. Our 

intuitive expectations are roughly confirmed for these bound states as 

they turn out to be in the mass range of about 1 to 2 GeV with decay 

widths ranging from a few MeV to much greater than 100 MeV, depending 

strongly upon the color representations of their constituents. These 

bound states are prime candidates for the process w+X [81. However, 

there are various uncertainties in the bag model estimates themselves, 

particularly for the higher color representations of the constituent 

scalars and it is conceivable that some of the objects are too heavy to 

appear in JI decay. 

An important subtlety we shall encounter is the possibility that 

the bag state containing two high dimensional color representations is 

itself tachyonic and thus leads to a condensation in the vacuum. We 

shall argue that such condensates are acceptable if there is no 

continuous symmetry associated with the bag state, in which case the 
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physical excitation remaining has a positive, non-zero mass squared, 

(i.e., no Goldstone bosons appear). 

Clearly there are many possible choices of G in the breaking scheme 

SU(3)+G beyond those of DGJ and SGS. G can be any one of the following: 

SO(3), SU(2)xU(l), SU(2), U(l)xU(l), U(l), SU(3)global, any other global 

symmetry, or nothing at all. In general, these will require different 

Higgs structures to implement. We restrict ourselves only to those 

representations that are consistent with asymptotic freedom. Hence, we 

allow scalars transforming as the 131, (61, (81, (101, [15), (211, and 

I271 dimensional representations of S"(3). In Section II, we calculate 

the masses of the bound states of these scalar fields and in Section III 

we examine the question of breaking QCD with vacuum expectation values 

of scalar fields. We look at this problem in the bag model and suggest 

a criterion for when the spontaneous breakdown of QCD is allowed. In 

Section IV, we calculate hadronic decay widths and production cross 

sections and we derive the excitation spectrum of the bound states. 

Finally, in Section V, we examine the experimental evidence restricting 

the existence of such scalar-scalar bound states. 

II. SCALAR-SCALAR BOUND STATES 

The mass of the 0++ bound state can be calculated using the MIT bag 

model with two scalar fields confined to a static spherical cavity of 

radius RO' Let @r denote a scalar in the r-dimensional color 

representation, (which may be either real or complex), and or a color 

singlet bound state containing two of the $r. In the absence of 
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perturbative gluonic corrections, a complex scalar field in the bag has 

the Hamiltonian: 

H = Id%{1 +Bl , (2.1) 

mere u2 may be either positive or negative and the integral extends 

over the bag volume and B is the bag constant. lhe resulting equations 

of motion and boundary conditions are: 

(i) (0+112)c$rr(;t't) = 0 , r<R 0 (2.2a) 

(ii) $r(%o,t) = 0 , and (2.2b) 

ciii) au~r(it,,t)+a~~r(ito,t) = -B . (2.2c) 

A discussion of the derivation of these constraints is given in 

ref. [73. Condition (iii) follows upon demanding zero net momentum flow 

through the static bag wall and fixes the solution's normalization for 

arbitrary R o in terms of B and R 0 . 

Taken together, eqs.(2.2a,b,c) provide a solution for $, for any 

value of the bag radius RO' but do not yield a quantization of the 

energy spectrum. For a complex field or with angular quantum numbers II 

and m, we have the general solution: 

$,(G,t) = ~(B,Ro)ja(KQr)YRm(B,O)e 
iwKt 

, (2.3) 

q Kt + u2, n(B,Ro) is a determined normalization factor, and 
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jR(KaRo) = 0. For the case 9.~0, 

$Jb) = 4 sinKr lwKt --e 
xP r 

where K = np/RO, p is an integer, and the energy is, 

ETOTAL : 5 nR;B , 

(2.4) 

(2.5) 

tiich is independent of the particular state in the bag. Hence, R. is 

not fixed in our solution and the state of minimum energy is the state 

where R. goes to zero. 

The proper quantization of the small oeoillations about a given 

classical solution to the bag can be carried out as in ref. [71. mis 

again fixes the normalization of the solution and defines the quantized 

values of R. and hence E. Unfortunately, there is an overall zero-point 

energy which remains unspecified. We refer the reader to the literature 

for this discussion 171 and we opt instead for a "quick-fix" which leads 

to a reasonable physical picture and supplies the extra needed 

constraints. We fix R. by demanding that the constituent fields have a 

particle number normalized to unity: 

4 
llBRO _ Q = -ij-d3;$+a;$ q p = 1 , (2.6) 

where we have explicitly evaluated Q for the solution in eq.CZ.4). 

Adopting the normalization requirement of eq.(2.6) gives the result for 

the energy: 
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E = ; sR;B + T F ; 
i=l 

JQ,(KQ,Ro) = 0 , 
1 1 

(2.7) 

for m constituents each in the indicated mode. l%e minimum of E with 

respect to RO now determines the mass of the bound state and for p2=0 

the result for two particles each in the Q=O lowest radial mode is: 

E = !i 21’4nB1’4 = g g&II4 
3 

. . (2.8) 

B is determined by analyses that fit the bag model spectrum to the 

hadronic spectrum and is numerically, B l/4 
= .145 CEV [9-J. Hence, in 

the naive approximations leading to eq.(2.8), we expect the O++ state to 

weigh in around 1.44 GeV. 

lhe result of eq.(2.8) for the O* bound state assumes ~~-0. In 

Fig. 1 we plot the mass of the bag containing two $,, determined by 

minimizing eq.(2.7) numerically, against 1~1 in units of B T/4 . Branch I 

is for constituents with p2>0 and is seen to rise with increasing !J, 

becoming asymptotic to the free particle masses 2~. Of course for 

l)ll/B"4 110 we are no longer justified in using the bag model alone and 

should resort to a potential model. Branch II of Fig. 1 shows the bag 

mass for constituents having p2<0. We will elaborate upon this in 

Section III, but we note presently that l~l/B"~>2.7 corresponds to the 

bag mass acquiring an imaginary part and we believe that this is a 

signal that the 0 state is becoming tachyonic, i.e., that it will 

condense by acquiring a vacuum expectation value. 'Ihis corresponds to a 

@ with a mass near 1 GeV. For still larger values of IpI, we believe 

there will persist a Q state residual excitation with roughly this mass. 
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In Section III, however, we will discuss the related question of how the 

actual breaking of SU(3)color is realized by the -u2 of the constituents 

in the bag model. 

men the 4 state becomes tachyonic, either by virtue of a negative 

mass-squared of the constituents or by gluon exchange, it is presumably 

described by an effective potential whose first few terms take the form: 

V(4) : + 2 42+ L 4Q 
4 

+ . . . (2.9) 

Of course, 4 will develop a vacuum expectation value, 4+v+4, but the 

only broken symmetry in (2.9) is a discrete one (at most) and thus the 

1eftOVeP eXCit.atiOn, 4, will not be a Goldstone boson but will have a 

mass near m. Hence condensation of the O+ state in general does not 

remove the O+ state from the spectrum and we still expg:t such an object 

in the range of 1 to a few GeV. 

We have set the constituent mass of the scalars 4r to zero. Ihis 

approximation is easily justified by the following simple model. 

Suppose that the breakdown of QCD is caused by the vacuum expectation 

value, (VEV), of a single scalar field, 4. lhen the potential energy may 

be written as 

V(‘$) : - ” ,$I2 4 4 +%, 

and the minimum of the potential occurs rJnen 

<I$> = p /A . F 

Tne VEV of 4 causes the gluon to obtain a mass m 
i3' 

(2.10) 

(2.11) 
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(2.12) 

mus, 

mg/T 4nm 

us- 
g 

<>, 
g 

(2.13) 

since unitarity arguments require that X2/16n2 I; 1. For small gluon 

masses, (say m JL 50-100 MeV), 
g 

the strong coupling constant g is 

presumably very large since we are in the non-perturbative confinement 

region and so u is very small. 'ihe same argument will hold in the more 

general case where the scalar field transforms non-trivially under the 

SU(3) gauge group. 

mere exist further corrections to the expression for the bag mass 

of Eq. (2.8). 'these include (a) the presence of quantum fluctuations of 

all colored fields in the cavity, (b) gluon exchange and self energy 

corrections, (c) center of lIL%SS motion effects, (d) a possible 

dependence of B upon the constituents' color representation r and (e) 

mixing of the 4r with the O++ glueball. these we briefly discuss here. 

(a) me bag will contain the zero point fluctuations of all 

colored fields in the theory including quarks, gluons and scalars. mis 

leads to a "Casimir effect" correction to the energy. For quarks and 

gluons this correction takes the form [q]: 

E 
q,g 

: aA4R3 0 + Zo/Ro , (2.14) 

Were A is a divergent cut-off and R. is the bag radius. For scalar 

fields one finds: 
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(2.15) 

Conventionally one treats the a-terms above as corrections to the 

bag constant and the Zo/Ro term is included phenomenologically. Hence, 

one does not have to deal with the divergent cut-off in this 

prescription. For scalars, however, the g term appears tiich cannot be 

renormalized away and one is faced with having to interpret the cut-off 

A. mis requires some care. 

For very short-wavelength quanta we expect a natural cut-off from 

asymptotic freedom and thus A is expected to be finite. For 

intermediate wavelengths we must consider the finite bag wall thickness 

tiich presumably becomes transparent for sufficiently short wavelengths. 

An analogy is afforded by the Casimir force between two parallel 

conductors such as copper. This too leads to a divergence as in 

Eq. (2.14). However, this divergence is due to the assumption of a 

perfect conductor tiich does not apply in reality for all wavelengths. 

Certainly photons with wavelengths less than a copper atomic size scale 

are unaware of the conducting boundary conditions, and the physical 

cut-off is of the order of the plasma frequency of the medium. In QCD 

we expect that the cut-offs in Eq. (2.14) are of order hQCD in reality 

and thus A s A QCD IP 100 MeV. A38 can in principle be determined by 

including this term in fits to the hadronio spectrum. 

me term Zo/Ro is included in bag modelhadronic spectrum fits with 

the result that Z. z-2.0 [9]. Since a typical bag radius is 

RO : 5 GeV-’ we see that the identification of A s A 
QCD 

allows the 

neglect of the g term provided: 
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IZo/Rol * 0.4 GeV >> It%'&.,R~I z IB(0.025)IGeV , (2.16) 

and hence we require 181<<16. B is proportional to the dimensionality of 

the color representation r and for very large r we expect this term to 

become important. It would be of interest to apply a large B-term to 

the calculation of the normal hadronic spectrum and to attempt an 

estimate of 8. This could further bound the light scalar content of QCD. 

We however neglect the B term completely in the mass estimates of bound 

states given below. 

When we include the zero point energy term Zo/Ro, the equation for 

the energy of n scalars in a bag, Eq. (2.71, becomes 

E+R;B+ 1 Ki+u n m+ Zo/Ro. (2.17) 
i=l 

AQ before, we minimize the energy with respect to R. to obtain, (for 

112=0), 

E = ; (4nB)"' T,Cy+ Zo13'4 I (2.18) 

where Ki = n i /R o. With Zo=-2, the mass of the O++ bound state is reduced 

to 1.08 GeV by this correction. 

(b) Gluon exchange is expected to be a substantial correction to 

the bound state mass, especially for constituents in the larger color 

representations since it generally scales with the Casimir operator 

C,(r) : l(ATj/2)(A7i/2). One must include the effects of gluon exchange 
aj 

between two constituents as well as the corrections to the constituents' 

self-energy due to the finite size of the bag, (see Fig. 2). One 
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generally considers these effects together as a color-generalization of 

the electromagnetic self-energy of a charge distribution: 

p(x)p(y)d3xd3y 

I?&;1 ' 
(2.19) 

mere pa(x) = p:(x) + p;(x) is the total local color charge density from 

the two constituents. lhis expression is valid in the static 

approximation in which the constituents always remain in the same 

wave-function for all time t. 

By elementary manipulations, this contribution to the energy can be 

rewritten in terms of the electrostatic self-energy of the electric 

field: 

3 AE+ldx( Ba(x).sa(x)) . (2.20) 

For the O++ state both constituents have equivalent wave functions 

and we may write for the gluon exchange energy: 

AE(O++) = 

d3xd3y 

(2.2la) 

d3xd3y 

I;-;1 ’ 

(2.2lb) 

here A 
p1~2~(x)=i~~~2~ao La/;! I$,(~) for distinguishable constituents. 

For a constitutent wave function of the form 
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(2.22) 

we obtain 

J-J co++ d3xd2 I+x)+Y) lo++> -& 
Ix-yl 

: JJ- co++ b;(x) Io++><o++lp;(y) lo++> 5??.@3 
I:-;1 

jo(Kxj2 jo(Ky)2 
= n2h$-s d3xd3y 

1x1 

$1 x". . AA 
2 iJ 2-j] 

(2.23a) 

,e; 
* dim(r) ' (2.23b) 

where use is made of the approximation of inserting only the O++ 

intermediate state (static approximation). 

Similarly we obtain: 

J-J co++ IP;(x)P;(Y) /o++> ++ : 
IX-Y I 

2 d3xd3Y AA (i&) $.msjl 
4n24 Is jO(Kx) ’ Jo(Q) l’-;l zy ij -y 

x dim(r) ' E * 

For scalars in a real representation of SU(3) of color and a O++ color 

singlet, we find that ~~l=A~l and el, but that XAT --iA and thus these 

two terms cancel by virtue of their group theoretical coefficients. For 

a complex representation for the constituents, we find that iii= 1:: and 

e-1 so again the terms cancel. For any state that has positive charge 

conjugation involving complex constituents, or has even parity involving 

real constituents in a color singlet the same cancellation will always 

occur. In the latter case this is just the result of Bose statistics 
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whioh forces the p,p, term in the self energy correction to have the 

same magnitude as the p1p2 term. 

lhis is also a consequence of our neglect of intermediate states 

that are not in the same configuration as the ground state. Since the 

net contribution of gluonic energies to the bag is expected to be large 

compared to the level spacing we do not really trust the static 

approximation. For example, keeping only the effect of Fig. (2a), the 

one-gluon interparticle exchange, our net gluonic correction to the 

energy of Eq. (2.8) would be given by: 

BR4 
AE : -g2sC2(r) 9 J d3xd3y sinKlxl sinKlyl 1 

il Klxl Klyl 
IL; I 

4C2(r) 
= - - as (s,, + dx)2 

RO 

(tiere gs is the strong coupling constant). If we parameterize this 

correction by a factor Z such that -l<Z<l and -- 

ZU 
AE z-2 

RO 
(5.68 C,(r)) , 

the mass of the O* ground state then ranges from a tachyonic unphysical 

value for Z-1 to a very large mass on the order of 2 GeV for Z=-1 and 

r=3 (for Z--l and r=27, this mass becomes 4.5 GeV). 

Further contributions would be expected from the repulsive A@4 

interaction of Fig. (3a) With is on a footing with one loop QCD self 

energy corrections. These we do not discuss but we expect them to be 
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potentially important. 

(c) Center of mass motion will be discussed in Section IV. 

(d) lhe bag constant may depend upon the color representation of 

the constituents. Since bag masses scale as B1'4 this dependence is 

weak. 

We assume as a bound that B is scaled by C,(r) and note that this 

increases the mass of the bound state of two 127)'s, 427, from 1.08 GeV 

to 1.20 GeV and so this is not a significant effect. 

(e) In addition to the one-gluon exchange diagram of Fig. 2, bound 

states of two identical scalar particles can also receive masses from 

the annihilation graphs of Fig. 3b. Indeed, it has been suggested that 

it is similar annihilation graphs tiich cause the n' to be much more 

massive than the value calculated from the naive bag model [lo]. Since 

the 4r have masses near that of the O++ glueball, (in the naive bag 

model, the O++ glueball has a mass of 980 MeV) [ll], the mixing between 

the 4r and the glueball, Fig. 3b, may be significant. We estimate this 

mixing by comparing it with the mixing of the n' with the O- glueball. 

(Since the n' is a flavor singlet, it mixes with the O- glueball via a 

diagram analogous to Fig. 3b). lhe overlap of the O- glueball (Cc) with 

the nl' has recently been calculated in the bag model by Carlson and 

Hansson [IO] to be, 

<GClly> : 0.08 . (2.26) 

Since this effect is proportional to T(r) for the color triplet quarks 

in the n', we estimate, 

<GGI4>:1 T(r) 
r 4 T(3) 

/gg (0.08) , (2.27) 
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(the one quarter is the familiar kinematic result of replacing fermions 

by scalars and the factor of dim(r)/dim(3) is the result of the 

differing wavefunction normalizations of the Or and the 17'). For the 

bound state of two color [271's we estimate, 

<GG I 427> II 0.36, (2.28) 

a potentially large effect. (For the color triplets, and the smaller 

dimensional SU(3) representations, this effect is much smaller, 

eg. <GG143>:0.02 and cGG1410>:0.17.) 

However, this naive scaling of the results for the n' may be 

incorrect and in any case, the contribution to the masses of the 4r from 

mixing with glueballs is corrected by the effect of the X44 type 

interactions of Fig. 3a. 

III. THE BREAKDOWN OF COLOR SYMMETRY IN THE BAG MODEL 

lhe bag model gives a simple dynamical picture of how the breakdown 

of exact QCD color symmetry may be realized. Curiously, we find a 

picture which is midway between the arguments of Georgi [ 123 and those 

of DeRGjula, Giles, and Jaffe [I31 on the viability of a confined local 

gauge symmetry undergoing spontaneous symmetry breakdown. We present 

this here, although it suggests further lines of study and several 

points tiich we have yet to clarify. It may represent a mechanism of 

more general interest. 

In Fig. (I), we &ow the mass of the O++ bag state containing two 

colored constituent scalars versus the mass of the constituents. Branch 

I is the normal case in which u2>0 and we find, as expected, that the 

bound state mass asymptotically approaches 21~1 as u2+-. 
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Branch II shows the bag mass plotted against IpI for u2<0 as is of 

interest in models in which QCD is spontaneously broken. We see that 

for 1~1 5 B 1/4 , the 0++ state is a hadronic bound state even though its 

constituents are tachyonic. Of course, this is due to the fact that the 

constituents kinetic energy is given by /(r2/R;)-u2 and this remains 

real as long as RO<lx/ul. 

me 0++ bound state mass is determined by minimizing the energy, 

E : $3 + 2 (3.1) 

with respect to Ro, where we assume Zo=O for convenience. For 

sufficiently large Ro, this expression always becomes unphysical and we 

must distinguish between three cases. Let Rmin be the value of R. tiich 

minimizes Re(E); then we have (a) Rmin<In/ul, (b) Rmin=In/uI, and 

(0) Rmin>I"/uI. mese cases are displayed schematically in Fig. (4). 

Clearly case (b) defines the critical value of 1~1 for which no stable 

bound state exists for larger values of u. lhis corresponds to the value 

l!Jl crit.2.7B1'4 on Branch II of Fig. (1). lhus for lpl>lplcrit=2.7B1’4 

there is a clear indication of an instability in the bag model. mis 

corresponds roughly to the expectations of Ceorgi who argues that such 

an instability is a non-calculable first order phase transition and 

occurs at too high a mass scale to correspond to a model of broken QCD. 

(me 1~1 <Iulcrit states, however, are perfectly acceptable hadronic 

states.) Indeed, Ivcrit 1~0.39 GeV, Vcich is too large a scale for the 

breakdown of SU(3)color into any residual subgroup. 
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However, the above analysis is incomplete. We have only studied 

the case of a bag containing tachyonic constituents with zero vacuum 

expectation values. We must also consider bag states in which the 

colored scalars have non-zero vacuum expectation values inside of the 

bag cavity. This leads to some novel consequences. 

Consider a modified bag Hamiltonian for real scalar fields with an 

unstable Higgs potential: 

H=j d3;t{ (2) 2 + $$a a$$ - $ c$ 2 + $ $I ' + B} , (3.2) 
Bag Volume 

where we keep only the tree approximation terms in a general Higgs 

potential. Suppose we now let the 4 field develop a vacuum expectation 

value, v, which minimizes the potential. Rewriting the Hamiltonian in 

terms of the shifted field $=4-v we find, 

^ 

H = sd3:(($2 + $&is; + g ; ' + B - ($, + . ..} , (3.3) 

where we now neglect the left-over $i3 and q4 interactions. We see that 

the Hamiltonian of Eq. (3.3) describes a normal p2>0 scalar field in a 

bag with a different bag constant B':(B-u4/2X). The resulting bag energy 

of a 4 bound state containing two scalar fields is then, 

+ 2($ + u2)1'2 . 
0 

(3.4) 

We must now distinguish between three new cases: (a) B-(u4/2X)>0, 

(b) B-(u2/2X)=0, and (c) B-(u4/2X)t0. The energy for these three cases 

is plotted in Fig. (5) for a fixed u2. In Fig. (5), we have assumed a 



-2l- FERMILAB-Pub-82/26-THY 

value of Iul<lvlcrit. We now consider the resulting physics of the bag. 

In case (cl, we have ).1>(2xB)"~. This can in principle occur for 

IIJl<<llllcrit in which case there is no stable bag state containing 

scalars. The bag will expand to an infinite radius, (after perhaps 

tunneling through a local barrier at Rbarrier), and the vacuum 

expectation value of the scalar field will be nonzero and .constant 

everywhere. Furthermore, the two scalar fields now become liberated and 

the energy of the vacuum is clearly unbounded below. It is doubtful 

that there exist confined hadrons in this phase of the theory because 

inside of a candidate hadronic state $ will always have a vacuum 

expectation value and the effective bag constant will be negative. 

Indeed, we interpret case (c) as a completely broken non-confining 

theory with the vacuum totally rearranged. 

Case (b), !J:(~XB)"~, is a deconfining phase containing both 

quasi-stable hadrons with energies situated at the minimum RLl,', and with 

free infinite radius states in which the two scalar particles escape to 

infinity. (Riin is found by minimizing Eq. (3.4)). 

Case (a), !.1<(21B)"~, 1s a novelty and we further distinguish two 

suboases, (ai) and (aii). In case (ai), we have a quasi-stable color 

singlet hadron with an energy minimum at RA:L. At R$ there appears to 

be a new bag with a bag constant B-(u4/2A) and with an energy lower than 

the normal hadronic state. The scalar vacuum expectation value is 

localized to a scale RLfA and does not permeate all of space. The Higgs 

scalars seem to be confined within the larger bag of radius ,(2?) 
min' The 

details of the spectrum in this phase are of interest and we suspect 

that they are sensitive to the resulting masses of the vector bosons 

within the bag state. If the Compton wavelength of a massive gluon, A 
g' 
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is small relative to Ri:A, the theory may appear to be a broken theory 

with a broken spectrum. Conversely, if Xg>>RA:A, the theory is 

evidently a peculiar kind of confining theory with no breakdown of 

color. 

In case (aii), the energy minimum at RAF: is higher than that at 

R(y) and mm suspect that the theory is unbroken QCD. Here the local 

energy mini: at Ri:A must correspond to unstable states in which 

apparently massive gluons decay into lighter color singlet hadrons. 

Thus a "massive gluon" must here, in fact, be a color singlet bound 

state of gluons and scalars. 

Our conclusion is that models of spontaneously broken QCD can exist 

for choices of !.1<(21B)"' in which u is comfortably less than 

?Jcrit:2.7B1'4. These models are extremely sensitive to the Higgs quartic 

coupling as well as the bag coupling, B. Thus, the argument that ucrit 

is determined solely by AQCD, (i.e. by B as in Fig. (5)) is an 

oversimplification. Also, we find that there may exist systems which 

are novel in that they are midway between the totally confining and 

totally broken phases as in Fig. (5). In the next section, however, we 

put aside these speculative concerns and calculate the hadronic 

properties of scalar-scalar bound states. 
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IV. HADRONIC PROPERTIES 

A. Hadronic Decay Widths 

In this section, we estimate the hadronic widths of the 4r,0++ 

bound states. In the bag model, such estimates are subject to large 

uncertainties due primarily to the absence of a high momentum scale 

tiioh can control the QCD corrections. We will be forced to rely upon 

perturbation theory for momentum transfers of the order of 1 GeV. 

Nonetheless, as rough estimates these are probably reliable. 

We expect that the decay of a 4r bound state is a typical OZI 

suppressed process as it involves the creation of two gluons and their 

subsequent decay to quark-antiquark pairs. me leading diagrams for a 

positive charge conjugation object are those of Fig. 6. For 

constituents in the r-dimensional color representation, we expect a 

width of order: 

F(4r+hadrons) = ~[T(r)/T(3)~2t'3/dim(r)lI'(~q+hadrons)OZI, (4.1) 

where (l/4) is a spinology factor and the remaining factors correct the 

color normalizations. (T(r)6abz Ej(Xyj/2)(X:i/2) and dim(r) is the 

dimension of the representation). In Table 1, we present these naive 

scaling estimates of the widths for a O++ state assuming a typical width 

F({q+hadrons)OZI of 1 MeV. As one would expect, the higher color 

representations such as the 121) and the 1271 have quite large decay 

widths owing to the large color factors. 
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It is instructive to calculate the hadronic decay width of the @r 

in the MIT bag model. The localization of the bag in position space 

introduces momentum uncertainities in the spatial wave function, $(I-), 

(we suppress the color indices for convenience here): 

.+ + 
A(G)e-lP'r . (4.2) 

For the O++ bound state, the Fourier transforms of the configuration 

space wavefunctions are readily performed: 

(4.3) 

where N is an irrelevant normalization factor and pO is the energy of 

the constituent; pg:&2. 

We define a two particle bag state centered at coordinate t, to be, 

IB,?O> = I d3i: d3; 6. -i(iI+i$)*ii, 

2k0(2n13 2qO(2n13 
A(k)A(q)a&aijlO> L&e 

him(r) 
t 

(4.4) 

where (i,j) are color indices in the r-dimensional color representation 

and a+ kr is the operator which creates @r(k) from the vacuum. The 

momentum eigenstates in the bag are superpositions of the states IB,%O>, 

IB,$> = ld3g e iis.; b(P) IB,?i> . (4.5) 

Here F(P) is given by, 
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F(s) = J2p,'{j d% 1 
IA& 121A6ib I21 

-1/2 
, (4.6) 

2K 
0 

(2~)~ 21PO-KCI' 

tiich ensures the covariant normalization, 

<B,iflB,b'> = (271)32P06(3+if-bt) . (4.7) 

(Here PO is the energy of the bound state, PO: m,+? r ). 

In the rest frame, ?=O and we have the amplitude for the hadronic 

decay of the O++ bound state from the diagrams of Fig. 6: 

A(Or+& = 
-igzTr(Xa/2 lb/21 

I 
d% 

LEG7 2Po(2d3 
A&AC-;)F(O)B (p,k q)E%" . !.lv ’ 12 

(4.8) 

lhe kinematics are given by P=(m*,O)=k+q. (We assume that the hadronic 

decay width is equal to the width into two gluons.) Evaluating the 

Feynman diagrams of Fig. (6) gives: 

B(p,k,q) 1-I ” = 2[ 
p~e,p*c2-p*e,k*e 2 P*E,P*E2-P.E2q*61 

E E lJv 1 2 -p'k + 
-p*k -E,‘E21 , (4.9) 

&here we have noted that k2=q2:0 and that the constituents are on-shell, 

p2qJ2. Also we have k*c,:q'E2=0. 

For the normalization factor F(O) we obtain, 

4 -l/2 

F(O) : &$ {I d3z N4 - Kg 4a mq 
4K;(2n13 El2 

J =&3-m ’ 
0 

here, 

(4.10) 
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I, :I= 
4 

sin x dx = 1.6~10 -3 

0 (n2-x2)4 
(4.11) 

and we have assumed pFiO<<l. 

The momentum integrations of the amplitude in Eq. (4.8) are 

straightforward and we find for the decay amplitude into outgoing gluons 

with polarizations X and X', 

A($,+& = 
-igETr(Xa/2 ib/2) 

2a2 
, (4.12a) 

where, 

I2 2 Jrn 
2 

sin ' dx = 7.96x10 -2 

0 (,2-x2)2 
, and 

I3 = Jrn x sin2x 

0 (a2-x2)2 
= .226 . 

The resulting decay width is, 

4a; 

y,+E43) = dim(r) - 

(4.12b) 

(4.12~) 

(4.13) 

These widths are listed in Table 1 for oLs=.5, the value typically 

obtained in bag model fits to hadronic data. We note that the bag model 

decay widths are generally a factor of two larger than those obtained in 

our naive scaling model. We consider this to be an excellent agreement 

in view of the crudity of our scaling model. 
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B. Hadronic Production Cross Sections 

lhe or bound states are expected to be produced in gluon fusion 

processes in such collisions as pp, pij, and imp at very high energies. 

lhe production cross-section is given by: 

lr2r 1 

Qr = s T dx I 
f'(x)f2(r/x) 

(x+.c/x) , 
Q 

Mere ~=Mi/.s, s is the total center of mass energy squared, x is the 

Feynman parameter, and f'(x), (f2(x1)), is the gluon distribution of 

projectile 1 (2). Tr is the hadronic decay width calculated above for 

the appropriate bound state of scalars. We assume that the gluon 

distribution function in the proton is of the form 1131: 

f@; protonw = ;(l-x)S . (4.15) 

The cross sections for producing the or by gluon fusion in proton-proton 

interactions are shown in Table 2 for various representations r of the 

scalar constituents. 

C. Spectrum of Bound States 

In addition to the O* bound state, there will exist a full 

excitation spectrum whose properties are sensitive to the nature of the 

constituent's color representations and tiich involves a subtlety of the 

bag model, namely, the question of spurious states (those states tiich 

exist in the bag model, but not in the standard quark model). We 

discuss these questions for scalar-scalar bound states through 5~2 and 
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for the first radial excitation of the O++ state. 

Excited states are described by linear combinations of products of 

the general bag wavefunctions of eq.(2.3) for arbitrary a, m, and k, 

here k labels the radial nodes. me spherical cavity approximation of 

the standard bag model treats the bag itself as a fixed object centered 

at a coordinate vector lo. Hence, the motion of two constituents, 

(located at :1 and T2 inside the bag), is an effective three body 

problem involving the relative coordinates ?,- o t and T2-Tlo. me 

constituents are assigned to orbital8 relative to ?O and one obtains a 

much larger set of configurations than would emerge in a system 

described by a two-body potential which involves only the relative 

coordinate + + 
r,-r2. We refer to these additional configurations as 

"spurious states." 

lhe problemhas been discussed by Rebbi [ 141 and by DeGrand and 

Jaffe [151 for the standard bag model containing quarks and gluons. lhe 

latter authors suggest that the actual spectrum of hadrons should 

contain some vestige of the spurious states in the sense that the bag 

itself may be viewed as a physical component of a hadron. One might 

argue that a typicalhadron has a substantial gluonic component, as is 

suggested by the deep inelastic energy-momentum sum rule, and that the 

bag represents a collective description of this gluonic component of the 

hadron, v&ich can thus have its own inertia relative to the constituent 

quarks. lhis is an open question phenomenologically. 

However, one should be careful to remove the spurious states in 

situations here they are clearly unphysical. Part of our focus is upon 

scalar constituents in large color representations. One might argue 

that for low dimensional color representations, it is as likely that a 
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constituent will exchange a gluon with another constituent as with the 

collective gluonic medium of the bag. However, as the color 

representation becomes large, it is increasingly probable that 

constituent - constituent gluon exchanges will occur more frequently 

than constituent-bag gluon exchanges. lhe spurious states would fade 

into the background in this limit, if they exist at all. Furthermore, 

the properties of the bag states simplify considerably upon removing the 

spurious states because angular momentum is not a good quantum number 

for these states. 

me constraints we impose to remove these spurious states are 

simple. Let 3 = (;,+;t2)/2 be the center of mass coordinate of the two 

scalar constituents and assume that the O* state of eq.(2.4) is the 

physical ground state of the bag. men we may consider all multipole 

operators constructed from 1; for example, the dipole and quadrupole 

operators are: 

di = Ri 

Qij = RiRj - 4 6ijR2 . 

lhe physical states are those states &ich have no transitions induced 

among themselves by the R-multipole operators. Physically, any state 

having an R-multipole transition to another state is just a state 

describing the motion of a non-internally excited bound state relative 

to the bag coordinate b,. 

We now consider the J=l angular excitations of two scalar 

constituents whose normalized wavefumtions are the following: 
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$;(‘+:l,;2) = N;‘) 13 (K'r )j (K'r )Y (0 $ 1 
0 01 112 Im 2'2 

f j (K’r ).I (K'r )Y (0 $ )} 0 02 101 lm 1'1 
. (4.16) 

(KIRO) is the (P+l)st root of the Bessel function ji. 'Ihese two particle 

wavefunctions satisfy the Klein-Gordon equation in the bag and the 

boundary condition that the wavefumtion vanish on the bag surface, 

l(k) + + 
4~~ (R0,r2) = Jh, '(')(r;,R~) = 0 . (4.17) 

We may normalize the probability charge to one, tiich is equivalent to 

satisfying the energy-momentum conservation bag boundary condition of 

eq.(2.2c). 

1 (+I me wavefunction Jb, , ($'% m f corresponds to positive, 

(negative), parity and so for complex scalar constituents would also 

imply positive, (negative), charge conjugation. For a real color 

representation, the J, 
1 C-1 
m state could not exist as a color singlet by 

Bose statistics. However, if we consider the matrix elements 1 (?I 
of tJrn 

to the 0++ ground state via the dipole operator, we find: 
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<O++l;(;1+:2) I$;(+)> : ,I') N~d3~1d3~2[jo(K~rl)jo(K$-2)l 

+ + 

.( --+j r1+r2 
0 

(K Or 
01 

)j 
1 

(K'r )Y (0 4 ) k 
12 lm 2'2 

j 0 (K'r 
02 

)j 
1 

(K'r )Y (0 I$ )I (4.18a) 
11 Im 1'1 

(4.18b) 

(nonzero) l(+) 
for 4Jm (4.1&) 

These results follow simply from the symmetry of the integrals under the 
+ 

interchange Of 7. 1 and r2. Hence the I+ state, (Jbo I(+)) , is a spurious 

state which corresponds to an kl excitation of the ground state 

relative to the bag coordinate b, and not to an internal excitation. As 

one expects in a two-body potential, the J=l vector state containing two 

neutral, real colored scalars in the color singlet state does not exist. 

I(-) me physical state is the odd charge conjugation state Jh, consisting 

of two complex scalars. (Correspondingly, the internal dipole 

transition to the ground state through the operator ((T1-f2)/2) occurs 

I(-) only for Jh, , as it should for a bona fide excitation, while vanishing 

for $A(+'.) 

We now extend the preceeding arguments to higher excitations 

including the J:2, 1, and 0 orbital excitations. me following 

wavefunctions span these excitations and satisfy the Klein-Gordon 

equation in the bag and the bag boundary conditions: 
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,,;t2) (It) = N2 (.I (K'r )j (K'r )Y (0 @ ) 0 01 2 22 2m 2'2 

+ j 0 (K'r )j 
02 2 

(K'r )Y (0 
21 an 

e 
1'1 

11 (4.19a) 

$6 ,,;f2) = N21j,(+,)jlW~r2) 1 
mq,mrT 

C~~~,Im,,Ylm,(019$l) 

Y ‘m”(~2’43)~ 

,,G2) = N,[j1(K~rl)j,(K~r2) 

Y ‘m”,(~2’~2) 1 

(4.19b) 

(4.19c) 

JIOG 1,;2) = No(jl(K~rl)jl(K~r2) .,,,,, Im~,lm~~Ylm~(Ol'~l) 1 Co 

ylm,,(02'tJ2)l f (4.19d) 

where in the standard notation, the Clebsch-Gordan coefficients are: 

CJtm 
%ml Am2 

= <K,L2JmlRlml!Z2m2> . (4.20) 

Those states having even internal parity are Grn 2(+), $2 ,, and J, ', while 

$2(-j 
m and $' are odd parity states and cannot exist with constituent 

scalars in real color representations. To discover which are the 



-33- FERMILAB-Pub-82/26-THY 

spurious states we consider the center of mass dipole transitions 

I(-) between 6, and each of the states listed in eq.(4.19). As before, 

one finds trivially from the symmetries under the exchanges of :, and T2 

that this matrix element vanishes for I)', I$, 2(+) 
and $m , mile it is 

nonzero for $i and and $I, 2(-j* Henoe, the odd internal parity objects are 

spurious and I)', $i, and @2m(+) are potentially physical states. 

However, it is insufficient to consider only the dipole transitions 

-- we must now consider the quadrupole matrix elements between JI”, (9 
2(+) 

and Jh, and the O* ground state. We consider an arbitrary linear 

2(+) combination of Qm and $i: 

2(+) 

I;> z 
mm >+B I$;> 

AcF ' 

and evaluate the matrix element of the quadrupole operator, 

<O++IQijIj;)> E Mij . 

(4.21) 

(4.22) 

By expanding the quadrupole operator in terms of spherical harmonics, we 

find the result: 

(+I Mij 0~ (constant){a2nIoJ1N2 + 8J2N2R . 

here J,, J2, and IO are overlap integrals of Bessel functions: 

J, =I 
R. 4 

0 
r jo(K$')j2(K$)dr , 

(4.23) 

(4.24a) 
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J2 = I R" r3j (K'r)j (K'r)dr 00 11 , and 
0 

IO = I 
R. 2 

r [jo(Kir)12dr . 
0 

FERMILAB-Pub-82/26-THY 

(4.24b) 

(4.24c) 

Hence, the physical J=2 state for which the quadrupole transition 

2(+) vanishes is a normalized linear combination of $, and I(, tiere o and 

g are related by: 

a = -F B(&c2n;:+r) . 
2 

The non-spurious wavefunction is then, 

I;;> q .441$+% - .ssl$;> . 

(4.25) 

(4.26) 

We also evaluate the quadrupole moment between the ground state and 

JInm to find, 

<O++IQij@> = 0 . (4.27) 

mu8 the I$' state has no center of mass quadrupole transition to the 

ground state and so is a physically acceptable state. (This result is 

obvious by rotational invariance of the spin zero states). 
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Radial excitations can be treated in a similar fatiion to the 

angular excitations considered above. lhe first radial excitation of 

the O- ground state corresponds to the wavefunctions, 

p+; 
R ,,;2) = NR o~'~~jo~K~rl~jo~K~r2~ f jO(K,$l)jO(K$2)} . (4.28) 

(+I Again, upon considering the dipole transition between JI, and $A (-) 

one readily finds that $I:-' has a non-zero transition matrix element, 

tiile (IF' does not. Hence I):) is the physical radial excitation while 

$ (-I is spurious. 

It is straightforward to extend this analysis to the l-- radial 

excitations and beyond. In terms of two-body orbital8 these physical 

states have simple interpretations. In Table (3) we summarize the above 

analyses and include estimates of the masses. 

D. Pseudoquarks 

In the context of the bag model, there is nothing to prevent an 

ordinary quark from forming a color singlet bound state with one of the 

scalars, $r. It should be emphasized that these are short distance bound 

states tiich should be produced readily in hadronic interactions. The 

bound states formed with a scalar octet, (@8qii), and with a 27-plet, 

($27994i), are electrically neutral and could escape detection if they 

are short-lived. (me best experimental bound [I61 on neutral particles 

with masses between 1 and 15 GeV is from an experiment tiich was only 

sensitive to particles with lifetimes greater than 10 -7 seconds.) 

However, the bound states formed with the [31, 161, [IO), {151, and [21} 

dimensional scalar particles all have fractional charges and masses 
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between one and two GeV and should have been seen in aoort-distance 

prcoesses -- they would be produced copiously in e+e- interactions if 

they existed. 

V. SOME PHENOMFNOLOGY AND CONCLUSIONS 

The phenomenology of bound states of two scalar particles will be 

similar to that of the O- glueballs. Indeed, if a candidate Lbr state 

is discovered, it will be extremely difficult to distinguish it from the 

O++ glueball predicted by QCD. 

'Ihere are only a handful of O* states tiich have been observed 

experimentally and they can be more or less understood in terms of the 

quark model. The isoscalar 6(980) and the isovector S+(gEG) have been 

described as qq{{ "crypto-exotic" states and the bag model predictions 

fit the spectrum well. 

An obvious place to search for the Qr,O++ states is in the 

radiative decays of the J, and the T. me amplitudes for the radiative 

decay of a J, to a O+ state and to a O- state are identical to lowest 

order in perturbation theory and so the rate of the decay of the $(or T) 

to @,y can be estimated by scaling the decay width from that of @ny or 

Wl'Y. lhe n and n' are each an admixture of flavor SD(3) singlet and 

octet components. We assume exact SU(3) flavor symmetry and scale 

P(++@,y) from T(Jrcn'y): 
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r(v,y) = $T(r)/T(3))2 
(I-mn: /m$ 

r(JHn,y) . (5.1) 

Using the experimental result l?($+n'y) = 157 eV, we obtain for example, 

r(w,,y) = 104 KeV and r($+D3y) : 36.1 eV. With the exception of 

r(@@3y), the widths of the J, into @,y are all much wider than those 

observed experimentally in Y+ny, *n'y, etc. If our mass estimates are 

reliable and the mass of a @ r state is less than three GeV, then these 

states should be seen as resonances in the inclusive photon spectrum of 

the Crystal Ball.[81 

The bin width of the inclusive photon spectrum of the Crystal Ball 

experiment is proportional to the resolution, 6E, of the sodium iodide 

shower detectors, where 

6E q .028E3" (5.2) 

(E is the photon energy measured in GeV.) At a photon energy of 1 GeV, 

the energy resolution, 6E, is then 28 MeV. The predicted widths of 

W,Y at-= all much less than 6E, so wry would be visible as a sharp 

spike in the inclusive photon spectrum. These decays are not seen at 

the predicted rates. 

The Crystal Ball collaboration has looked at nn, KK, nn, etc. 

final states and again sees no evience at present for the existence of 

0 ++ states. (One might worry that somehow the or is "hidden" under the 

f peak in JHuf(1270). However, the branching ratio for wyf is much 

less, [B.R.(@yf) : 1.3~10-~1, than that predicted for $+yDr, (with the 

exception of r=3), and the angular distribution of photons is well fit 

by that expected for a spin 2 object. Indeed, the Crystal Ball 
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Collaboration claims that the relative probability for the spin 0 

hypothesis as compared to the spin 2 hypothesis is 10 -11 ). The Crystal 

Ball data provides no evidence for the existence of bound states of 

scalars if the scalars have a dimension greater than three and if the 

mass of the bound state is less than 3 GeV. Further exploration of this 

mass range is of interest. 

me radiative decays of the T should also prove a fertile ground 

for searching for the Qr if they are too massive to be produced in Q 

decays. If any of the Qr states exist with masses less than 9 GeV, they 

tioould be seen at CESR. 

In conclusion, we have examined the phenomenology of bound states 

of light, colored, electrically neutral scalars in varying 

representations r of SU(3). The existance of such scalar particles is 

highly constrained by current experimental limits. Color triplets are 

forbidden because they would form fractionally charged bound states with 

one antiquark--the naive bag model predicts that these states would be 

at 1.4 GeV and experimentally no such states are seen in e+e- 

interactions up to masses of 15 GeV. Colored sextets of scalars are 

also not allowed because of the non-existance of their bound states with 

an antiquark pair. Scalar particles in the f61, (81, {IO), 1151, I211, 

and {27) dimensional representations of SU(3) should have been seen by 

me Crystal Ball unless the scalar-scalar bound states have masses 

greater than 3 GeV. Finally, scalar particles in higher dimensional 

representations than the 1271 are forbidden by the requirement that QCD 

with three families of fermions be asymptotically free. 
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An important question to resolve is how reliable these bound state 

ma.35 estimates are. The naive bag model value for the mass of a two 

xalar bound state is about 1.4 CeV. All of the corrections to the mass 

which we have included, (one gluon exchange and the zero-point energy), 

lower the energy of the bound state. It is possible unfortunately that 

the annihilation graph and quart& interaction of Fig. 2 make our 

estimates of the bound state masses unreliable. However, we suspect 

that even including such corm-2 tions rigorously, the mass scale 

associated with a bound state of two massless scalar fields must be a 

typical hadronic scale. In this case, the Qr, if they exist, should be 

seen in the $ and/or T radiative decays. 

Our conclusion is that if QCD is broken by colored scalars, then 

the short distance bound states of scalars should be readily produced in 

accelerators and the phenomenology of these scalars is already severely 

restricted by experimental limits. 
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TABLE CAPTIONS 

Table 1: Badronic decay widths for a bound state, Qr, of two scalars in 

the r-dimensional representation of SU(3) are calculated in 

both a naive scaling model and in the MIT bag model. 

Table 2. Production cross sections for producing Qr in pp collisions 

via gluon fusion are shown for varying center of mass 

energies. We assume a gluon distribution function in the 

proton of the form fpg(x)=3(1-~)~/x. 

Table 3: The scalar-scalar bound state spectrum in the MIT bag model is 

presented along with the two body correspondence of each 

state. 
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r 

3 

6 

8 

10 

15 

21 

27 

TABLE 1. Hadronic Decay Widths 

r(Q r+hadrons) (MeV) 

Naive Scaling Bag Model 

0.25 0.63 

3.1 7.8 

3.4 8.4 

17 42 

20 50 

175 436 

81 200 

TABLE 2. PP Production Cross Sections 

__--- 

(u in pb) 

- 

r obG.4 GeV) o(&=ll GeV) d/z45 GeV) 

3 0.2 1.19 5.38 

6 2.48 14.73 66.61 

8 2.67 15.87 71.73 

10 13.33 79.33 358.67 

15 15.87 94.44 426.98 

21 138.41 823.56 3723.30 

27 63.49 377.78 1707.94 
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State 

4J 
0++ 

6 I(-) 

?J2 
*CO) 

$(+) 
R 

ql(-1 
R 

TABLE 3. Bound State Spectrum 
I 4 

Two-Body Correspondence 
I 

Mass (GeV) Mass (GeV) 
(Zo:O) (Zo2-2) 

1s co++) 1.44 1.08 

2P (l--I 1.67 1.33 

3D c2++1 1.88 1.55 

3s co++1 1.88 1.55 

2s co++1 1.95 1.63 

3P (l--I 2.17 1.86 
I 



-45- FERMILAB-Pub-82/26-THY 

FIGURE CAPTIONS 

Fig. 1: The energy E of the O++ bag state containing two colored 

scalars plotted as a function of the constituent mass u for 

u2<0 and for u2>0. (Ecrit is the energy at ucrit=2.7 B 
l/4) . 

Fig. 2: One gluon exchange graphs which contribute to the mass of the 

Qr bound state. 

Fig. 3: (a) Contribution of the XQ4 interaction to the Qr mass. 

(b) Lowest order contributions to the mixing between Q and the r 

0 ++ glueball. 

Fig. 4: The energy, E(R) of a bag of radius R containing two scalars. 

Branch (a) corresponds to Rmin<lnlul, branch (b) to Rmin=1711uI, 

and branch (c) to Rmin>lnlul. (The constituent mass u is 

fixed.) 

Fig. 5: The energy, E(R) of a bag of radius R containing two scalars. 

Branch (a) corresponds to B-(u2/2X)>0, branch (b) to 

B-(u2/2h)=0, and branch (01 to B-(u2/2X)<0. Branch (ai) and 

(aii) both have hadrons bound in a bag of radius FI:~~. Branch 

(bi) corresponds to hadrons bound in a bag of radius R(l) min ' 

while branch (bii) describes hadrons which are not bound in a 

bag. 

Fig. 6: Lowest order contributions to the decay Qr+2 gluons. 
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